Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

TEM^3-Learning: Time-Efficient Multimodal Multi-Task Learning for Advanced Assistive Driving (2506.18084v1)

Published 22 Jun 2025 in cs.CV

Abstract: Multi-task learning (MTL) can advance assistive driving by exploring inter-task correlations through shared representations. However, existing methods face two critical limitations: single-modality constraints limiting comprehensive scene understanding and inefficient architectures impeding real-time deployment. This paper proposes TEM3-Learning (Time-Efficient Multimodal Multi-task Learning), a novel framework that jointly optimizes driver emotion recognition, driver behavior recognition, traffic context recognition, and vehicle behavior recognition through a two-stage architecture. The first component, the mamba-based multi-view temporal-spatial feature extraction subnetwork (MTS-Mamba), introduces a forward-backward temporal scanning mechanism and global-local spatial attention to efficiently extract low-cost temporal-spatial features from multi-view sequential images. The second component, the MTL-based gated multimodal feature integrator (MGMI), employs task-specific multi-gating modules to adaptively highlight the most relevant modality features for each task, effectively alleviating the negative transfer problem in MTL. Evaluation on the AIDE dataset, our proposed model achieves state-of-the-art accuracy across all four tasks, maintaining a lightweight architecture with fewer than 6 million parameters and delivering an impressive 142.32 FPS inference speed. Rigorous ablation studies further validate the effectiveness of the proposed framework and the independent contributions of each module. The code is available on https://github.com/Wenzhuo-Liu/TEM3-Learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.