Papers
Topics
Authors
Recent
2000 character limit reached

SecureFed: A Two-Phase Framework for Detecting Malicious Clients in Federated Learning (2506.16458v1)

Published 19 Jun 2025 in cs.CR

Abstract: Federated Learning (FL) protects data privacy while providing a decentralized method for training models. However, because of the distributed schema, it is susceptible to adversarial clients that could alter results or sabotage model performance. This study presents SecureFed, a two-phase FL framework for identifying and reducing the impact of such attackers. Phase 1 involves collecting model updates from participating clients and applying a dimensionality reduction approach to identify outlier patterns frequently associated with malicious behavior. Temporary models constructed from the client updates are evaluated on synthetic datasets to compute validation losses and support anomaly scoring. The idea of learning zones is presented in Phase 2, where weights are dynamically routed according to their contribution scores and gradient magnitudes. High-value gradient zones are given greater weight in aggregation and contribute more significantly to the global model, while lower-value gradient zones, which may indicate possible adversarial activity, are gradually removed from training. Until the model converges and a strong defense against poisoning attacks is possible, this training cycle continues Based on the experimental findings, SecureFed considerably improves model resilience without compromising model performance.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.