Aligning Proteins and Language: A Foundation Model for Protein Retrieval (2506.08023v1)
Abstract: This paper aims to retrieve proteins with similar structures and semantics from large-scale protein dataset, facilitating the functional interpretation of protein structures derived by structural determination methods like cryo-Electron Microscopy (cryo-EM). Motivated by the recent progress of vision-LLMs (VLMs), we propose a CLIP-style framework for aligning 3D protein structures with functional annotations using contrastive learning. For model training, we propose a large-scale dataset of approximately 200,000 protein-caption pairs with rich functional descriptors. We evaluate our model in both in-domain and more challenging cross-database retrieval on Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) dataset, respectively. In both cases, our approach demonstrates promising zero-shot retrieval performance, highlighting the potential of multimodal foundation models for structure-function understanding in protein biology.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.