Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Explainable AI: XAI-Guided Context-Aware Data Augmentation (2506.03484v1)

Published 4 Jun 2025 in cs.CL and cs.AI

Abstract: Explainable AI (XAI) has emerged as a powerful tool for improving the performance of AI models, going beyond providing model transparency and interpretability. The scarcity of labeled data remains a fundamental challenge in developing robust and generalizable AI models, particularly for low-resource languages. Conventional data augmentation techniques introduce noise, cause semantic drift, disrupt contextual coherence, lack control, and lead to overfitting. To address these challenges, we propose XAI-Guided Context-Aware Data Augmentation. This novel framework leverages XAI techniques to modify less critical features while selectively preserving most task-relevant features. Our approach integrates an iterative feedback loop, which refines augmented data over multiple augmentation cycles based on explainability-driven insights and the model performance gain. Our experimental results demonstrate that XAI-SR-BT and XAI-PR-BT improve the accuracy of models on hate speech and sentiment analysis tasks by 6.6% and 8.1%, respectively, compared to the baseline, using the Amharic dataset with the XLM-R model. XAI-SR-BT and XAI-PR-BT outperform existing augmentation techniques by 4.8% and 5%, respectively, on the same dataset and model. Overall, XAI-SR-BT and XAI-PR-BT consistently outperform both baseline and conventional augmentation techniques across all tasks and models. This study provides a more controlled, interpretable, and context-aware solution to data augmentation, addressing critical limitations of existing augmentation techniques and offering a new paradigm shift for leveraging XAI techniques to enhance AI model training.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube