Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

DnR-nonverbal: Cinematic Audio Source Separation Dataset Containing Non-Verbal Sounds (2506.02499v2)

Published 3 Jun 2025 in cs.SD and eess.AS

Abstract: We propose a new dataset for cinematic audio source separation (CASS) that handles non-verbal sounds. Existing CASS datasets only contain reading-style sounds as a speech stem. These datasets differ from actual movie audio, which is more likely to include acted-out voices. Consequently, models trained on conventional datasets tend to have issues where emotionally heightened voices, such as laughter and screams, are more easily separated as an effect, not speech. To address this problem, we build a new dataset, DnR-nonverbal. The proposed dataset includes non-verbal sounds like laughter and screams in the speech stem. From the experiments, we reveal the issue of non-verbal sound extraction by the current CASS model and show that our dataset can effectively address the issue in the synthetic and actual movie audio. Our dataset is available at https://zenodo.org/records/15470640.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.