Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Frequentist Uncertainties on Neural Density Ratios with wifi Ensembles (2506.00113v1)

Published 30 May 2025 in hep-ph, hep-ex, and physics.data-an

Abstract: We introduce wifi ensembles as a novel framework to obtain asymptotic frequentist uncertainties on density ratios, with a particular focus on neural ratio estimation in the context of high-energy physics. When the density ratio of interest is a likelihood ratio conditioned on parameters, wifi ensembles can be used to perform simulation-based inference on those parameters. After training the basis functions f_i(x), uncertainties on the weights w_i can be straightforwardly propagated to the estimated parameters without requiring extraneous bootstraps. To demonstrate this approach, we present an application in quantum chromodynamics at the Large Hadron Collider, using wifi ensembles to estimate the likelihood ratio between generated quark and gluon jets. We use this learned likelihood ratio to estimate the quark fraction in a synthetic mixed quark/gluon sample, showing that the resultant uncertainties empirically satisfy the desired coverage properties.

Summary

We haven't generated a summary for this paper yet.