Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Knowledge Distillation with Reward Guidance (2505.18952v1)

Published 25 May 2025 in cs.LG

Abstract: This work studies knowledge distillation (KD) for LLMs through preference optimization. We propose a reward-guided imitation learning framework for sequential KD, formulating a min-max optimization problem between the policy and reward model (RM) to minimize the performance gap between the student and teacher policies. Specifically, the reward optimization is constrained to achieve near-optimality within a confidence set for preference alignment. For preference data construction, we explore both offline and online preference-based KD. Additionally, we reformulate the RM using the $Q$-value function and extend the framework to white-box KD, where the teacher policy's predicted probabilities are accessible. Theoretical analysis and empirical results demonstrate the effectiveness of the proposed framework.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube