Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Preference Distillation via Value based Reinforcement Learning (2509.16965v1)

Published 21 Sep 2025 in cs.CL

Abstract: Direct Preference Optimization (DPO) is a powerful paradigm to align LLMs with human preferences using pairwise comparisons. However, its binary win-or-loss supervision often proves insufficient for training small models with limited capacity. Prior works attempt to distill information from large teacher models using behavior cloning or KL divergence. These methods often focus on mimicking current behavior and overlook distilling reward modeling. To address this issue, we propose \textit{Teacher Value-based Knowledge Distillation} (TVKD), which introduces an auxiliary reward from the value function of the teacher model to provide a soft guide. This auxiliary reward is formulated to satisfy potential-based reward shaping, ensuring that the global reward structure and optimal policy of DPO are preserved. TVKD can be integrated into the standard DPO training framework and does not require additional rollouts. Our experimental results show that TVKD consistently improves performance across various benchmarks and model sizes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube