Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Titanus: Enabling KV Cache Pruning and Quantization On-the-Fly for LLM Acceleration (2505.17787v1)

Published 23 May 2025 in cs.AR

Abstract: LLMs have gained great success in various domains. Existing systems cache Key and Value within the attention block to avoid redundant computations. However, the size of key-value cache (KV cache) is unpredictable and can even be tens of times larger than the weights in the long context length scenario. In this work, we propose Titanus, a software-hardware co-design to efficiently compress the KV cache on-the-fly. We first propose the cascade pruning-quantization (CPQ) method to reduce the KV cache movement. The hierarchical quantization extension strategy is introduced to tackle the non-independent per-channel quantization issue. To further reduce KV cache movement, we transfer only the non-zero KV cache between the accelerator and off-chip memory. Moreover, we customize a two-stage design space exploration framework for the CPQ method. A novel pipeline and parallelism dataflow is designed to reduce the first token generation time. Experiments show that Titanus achieves 159.9x (49.6x) and 34.8x (29.2x) energy efficiency (throughput) compared to Nvidia A100 GPU and FlightLLM respectively. The code for Titanus is available at https://github.com/peilin-chen/Titanus-for-LLM-acceleration.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.