Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Self Distillation via Iterative Constructive Perturbations (2505.14751v1)

Published 20 May 2025 in cs.LG, cs.AI, and cs.ET

Abstract: Deep Neural Networks have achieved remarkable achievements across various domains, however balancing performance and generalization still remains a challenge while training these networks. In this paper, we propose a novel framework that uses a cyclic optimization strategy to concurrently optimize the model and its input data for better training, rethinking the traditional training paradigm. Central to our approach is Iterative Constructive Perturbation (ICP), which leverages the model's loss to iteratively perturb the input, progressively constructing an enhanced representation over some refinement steps. This ICP input is then fed back into the model to produce improved intermediate features, which serve as a target in a self-distillation framework against the original features. By alternately altering the model's parameters to the data and the data to the model, our method effectively addresses the gap between fitting and generalization, leading to enhanced performance. Extensive experiments demonstrate that our approach not only mitigates common performance bottlenecks in neural networks but also demonstrates significant improvements across training variations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube