Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Attribution Projection Calculus: A Novel Framework for Causal Inference in Bayesian Networks (2505.12094v1)

Published 17 May 2025 in cs.LG, cs.AI, cs.IT, math.IT, and stat.ML

Abstract: This paper introduces Attribution Projection Calculus (AP-Calculus), a novel mathematical framework for determining causal relationships in structured Bayesian networks. We investigate a specific network architecture with source nodes connected to destination nodes through intermediate nodes, where each input maps to a single label with maximum marginal probability. We prove that for each label, exactly one intermediate node acts as a deconfounder while others serve as confounders, enabling optimal attribution of features to their corresponding labels. The framework formalizes the dual nature of intermediate nodes as both confounders and deconfounders depending on the context, and establishes separation functions that maximize distinctions between intermediate representations. We demonstrate that the proposed network architecture is optimal for causal inference compared to alternative structures, including those based on Pearl's causal framework. AP-Calculus provides a comprehensive mathematical foundation for analyzing feature-label attributions, managing spurious correlations, quantifying information gain, ensuring fairness, and evaluating uncertainty in prediction models, including LLMs. Theoretical verification shows that AP-Calculus not only extends but can also subsume traditional do-calculus for many practical applications, offering a more direct approach to causal inference in supervised learning contexts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.