Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Causal SHAP: Feature Attribution with Dependency Awareness through Causal Discovery (2509.00846v1)

Published 31 Aug 2025 in cs.LG, cs.AI, and stat.ME

Abstract: Explaining ML predictions has become crucial as ML models are increasingly deployed in high-stakes domains such as healthcare. While SHapley Additive exPlanations (SHAP) is widely used for model interpretability, it fails to differentiate between causality and correlation, often misattributing feature importance when features are highly correlated. We propose Causal SHAP, a novel framework that integrates causal relationships into feature attribution while preserving many desirable properties of SHAP. By combining the Peter-Clark (PC) algorithm for causal discovery and the Intervention Calculus when the DAG is Absent (IDA) algorithm for causal strength quantification, our approach addresses the weakness of SHAP. Specifically, Causal SHAP reduces attribution scores for features that are merely correlated with the target, as validated through experiments on both synthetic and real-world datasets. This study contributes to the field of Explainable AI (XAI) by providing a practical framework for causal-aware model explanations. Our approach is particularly valuable in domains such as healthcare, where understanding true causal relationships is critical for informed decision-making.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.