Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Assessing Collective Reasoning in Multi-Agent LLMs via Hidden Profile Tasks (2505.11556v1)

Published 15 May 2025 in cs.CL, cs.AI, and cs.MA

Abstract: Multi-agent systems built on LLMs promise enhanced problem-solving through distributed information integration, but also risk replicating collective reasoning failures observed in human groups. Yet, no theory-grounded benchmark exists to systematically evaluate such failures. In this paper, we introduce the Hidden Profile paradigm from social psychology as a diagnostic testbed for multi-agent LLM systems. By distributing critical information asymmetrically across agents, the paradigm reveals how inter-agent dynamics support or hinder collective reasoning. We first formalize the paradigm for multi-agent decision-making under distributed knowledge and instantiate it as a benchmark with nine tasks spanning diverse scenarios, including adaptations from prior human studies. We then conduct experiments with GPT-4.1 and five other leading LLMs, including reasoning-enhanced variants, showing that multi-agent systems across all models fail to match the accuracy of single agents given complete information. While agents' collective performance is broadly comparable to that of human groups, nuanced behavioral differences emerge, such as increased sensitivity to social desirability. Finally, we demonstrate the paradigm's diagnostic utility by exploring a cooperation-contradiction trade-off in multi-agent LLM systems. We find that while cooperative agents are prone to over-coordination in collective settings, increased contradiction impairs group convergence. This work contributes a reproducible framework for evaluating multi-agent LLM systems and motivates future research on artificial collective intelligence and human-AI interaction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube