Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Decrypto Benchmark for Multi-Agent Reasoning and Theory of Mind (2506.20664v1)

Published 25 Jun 2025 in cs.AI, cs.CL, cs.HC, and cs.MA

Abstract: As LLMs gain agentic abilities, they will have to navigate complex multi-agent scenarios, interacting with human users and other agents in cooperative and competitive settings. This will require new reasoning skills, chief amongst them being theory of mind (ToM), or the ability to reason about the "mental" states of other agents. However, ToM and other multi-agent abilities in LLMs are poorly understood, since existing benchmarks suffer from narrow scope, data leakage, saturation, and lack of interactivity. We thus propose Decrypto, a game-based benchmark for multi-agent reasoning and ToM drawing inspiration from cognitive science, computational pragmatics and multi-agent reinforcement learning. It is designed to be as easy as possible in all other dimensions, eliminating confounding factors commonly found in other benchmarks. To our knowledge, it is also the first platform for designing interactive ToM experiments. We validate the benchmark design through comprehensive empirical evaluations of frontier LLMs, robustness studies, and human-AI cross-play experiments. We find that LLM game-playing abilities lag behind humans and simple word-embedding baselines. We then create variants of two classic cognitive science experiments within Decrypto to evaluate three key ToM abilities. Surprisingly, we find that state-of-the-art reasoning models are significantly worse at those tasks than their older counterparts. This demonstrates that Decrypto addresses a crucial gap in current reasoning and ToM evaluations, and paves the path towards better artificial agents.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 14 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube