Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fault Diagnosis across Heterogeneous Domains via Self-Adaptive Temporal-Spatial Attention and Sample Generation (2505.11083v1)

Published 16 May 2025 in cs.LG and cs.AI

Abstract: Deep learning methods have shown promising performance in fault diagnosis for multimode process. Most existing studies assume that the collected health state categories from different operating modes are identical. However, in real industrial scenarios, these categories typically exhibit only partial overlap. The incompleteness of the available data and the large distributional differences between the operating modes pose a significant challenge to existing fault diagnosis methods. To address this problem, a novel fault diagnosis model named self-adaptive temporal-spatial attention network (TSA-SAN) is proposed. First, inter-mode mappings are constructed using healthy category data to generate multimode samples. To enrich the diversity of the fault data, interpolation is performed between healthy and fault samples. Subsequently, the fault diagnosis model is trained using real and generated data. The self-adaptive instance normalization is established to suppress irrelevant information while retaining essential statistical features for diagnosis. In addition, a temporal-spatial attention mechanism is constructed to focus on the key features, thus enhancing the generalization ability of the model. The extensive experiments demonstrate that the proposed model significantly outperforms the state-of-the-art methods. The code will be available on Github at https://github.com/GuangqiangLi/TSA-SAN.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube