Papers
Topics
Authors
Recent
2000 character limit reached

SCCAM: Supervised Contrastive Convolutional Attention Mechanism for Ante-hoc Interpretable Fault Diagnosis with Limited Fault Samples

Published 3 Feb 2023 in cs.LG | (2302.01599v2)

Abstract: In real industrial processes, fault diagnosis methods are required to learn from limited fault samples since the procedures are mainly under normal conditions and the faults rarely occur. Although attention mechanisms have become popular in the field of fault diagnosis, the existing attention-based methods are still unsatisfying for the above practical applications. First, pure attention-based architectures like transformers need a large number of fault samples to offset the lack of inductive biases thus performing poorly under limited fault samples. Moreover, the poor fault classification dilemma further leads to the failure of the existing attention-based methods to identify the root causes. To address the aforementioned issues, we innovatively propose a supervised contrastive convolutional attention mechanism (SCCAM) with ante-hoc interpretability, which solves the root cause analysis problem under limited fault samples for the first time. The proposed SCCAM method is tested on a continuous stirred tank heater and the Tennessee Eastman industrial process benchmark. Three common fault diagnosis scenarios are covered, including a balanced scenario for additional verification and two scenarios with limited fault samples (i.e., imbalanced scenario and long-tail scenario). The comprehensive results demonstrate that the proposed SCCAM method can achieve better performance compared with the state-of-the-art methods on fault classification and root cause analysis.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.