Private LoRA Fine-tuning of Open-Source LLMs with Homomorphic Encryption (2505.07329v1)
Abstract: Preserving data confidentiality during the fine-tuning of open-source LLMs is crucial for sensitive applications. This work introduces an interactive protocol adapting the Low-Rank Adaptation (LoRA) technique for private fine-tuning. Homomorphic Encryption (HE) protects the confidentiality of training data and gradients handled by remote worker nodes performing the bulk of computations involving the base model weights. The data owner orchestrates training, requiring minimal local computing power and memory, thus alleviating the need for expensive client-side GPUs. We demonstrate feasibility by fine-tuning a Llama-3.2-1B model, presenting convergence results using HE-compatible quantization and performance benchmarks for HE computations on GPU hardware. This approach enables applications such as confidential knowledge base question answering, private codebase fine-tuning for AI code assistants, AI agents for drafting emails based on a company's email archive, and adapting models to analyze sensitive legal or healthcare documents.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.