Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

zkLoRA: Fine-Tuning Large Language Models with Verifiable Security via Zero-Knowledge Proofs (2508.21393v1)

Published 29 Aug 2025 in cs.CR and cs.AI

Abstract: Fine-tuning LLMs is crucial for adapting them to specific tasks, yet it remains computationally demanding and raises concerns about correctness and privacy, particularly in untrusted environments. Although parameter-efficient methods like Low-Rank Adaptation (LoRA) significantly reduce resource requirements, ensuring the security and verifiability of fine-tuning under zero-knowledge constraints remains an unresolved challenge. To address this, we introduce zkLoRA, the first framework to integrate LoRA fine-tuning with zero-knowledge proofs (ZKPs), achieving provable security and correctness. zkLoRA employs advanced cryptographic techniques -- such as lookup arguments, sumcheck protocols, and polynomial commitments -- to verify both arithmetic and non-arithmetic operations in Transformer-based architectures. The framework provides end-to-end verifiability for forward propagation, backward propagation, and parameter updates during LoRA fine-tuning, while safeguarding the privacy of model parameters and training data. Leveraging GPU-based implementations, zkLoRA demonstrates practicality and efficiency through experimental validation on open-source LLMs like LLaMA, scaling up to 13 billion parameters. By combining parameter-efficient fine-tuning with ZKPs, zkLoRA bridges a critical gap, enabling secure and trustworthy deployment of LLMs in sensitive or untrusted environments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube