Models of attractor dynamics in the brain (2505.01098v1)
Abstract: Attractor dynamics are a fundamental computational motif in neural circuits, supporting diverse cognitive functions through stable, self-sustaining patterns of neural activity. In these lecture notes, we review four key examples that demonstrate how autoassociative neural network models can elucidate the computational mechanisms underlying attractor-based information processing in biological neural systems performing cognitive functions. Drawing on empirical evidence, we explore hippocampal spatial representations, visual classification in the inferotemporal cortex, perceptual adaptation and priming, and working-memory biases shaped by sensory history. Across these domains, attractor network models reveal common computational principles and provide analytical insights into how experience shapes neural activity and behavior. Our synthesis underscores the value of attractor models as powerful tools for probing the neural basis of cognition and behavior.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.