Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Dynamics of Adaptive Continuous Attractor Neural Networks (2410.06517v1)

Published 9 Oct 2024 in q-bio.NC and physics.bio-ph

Abstract: Attractor neural networks consider that neural information is stored as stationary states of a dynamical system formed by a large number of interconnected neurons. The attractor property empowers a neural system to encode information robustly, but it also incurs the difficulty of rapid update of network states, which can impair information update and search in the brain. To overcome this difficulty, a solution is to include adaptation in the attractor network dynamics, whereby the adaptation serves as a slow negative feedback mechanism to destabilize which are otherwise permanently stable states. In such a way, the neural system can, on one hand, represent information reliably using attractor states, and on the other hand, perform computations wherever rapid state updating is involved. Previous studies have shown that continuous attractor neural networks with adaptation (A-CANNs) exhibits rich dynamical behaviors accounting for various brain functions. In this paper, we present a comprehensive view of the rich diverse dynamics of A-CANNs. Moreover, we provide a unified mathematical framework to understand these different dynamical behaviors, and briefly discuss about their biological implications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.