Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Integrating Locality-Aware Attention with Transformers for General Geometry PDEs (2504.13480v1)

Published 18 Apr 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.