Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Applications of Poisson cohomology to the inducibility problems and study of deformation maps (2504.06760v1)

Published 9 Apr 2025 in math.RT, math.KT, and math.RA

Abstract: This paper provides some applications of the Poisson cohomology groups introduced by Flato, Gerstenhaber and Voronov. Given an abelian extension of a Poisson algebra by a representation, we first investigate the inducibility of a pair of Poisson algebra automorphisms and show that the corresponding obstruction lies in the second Poisson cohomology group. Consequently, we obtain the Wells exact sequence connecting various automorphism groups and the second Poisson cohomology group. Subsequently, we also consider the inducibility for a pair of Poisson algebra derivations, obtain the obstruction and construct the corresponding Wells-type exact sequence. To get another application, we introduce the notion of a `deformation map' in a proto-twilled Poisson algebra. A deformation map unifies various well-known operators such as Poisson homomorphisms, Poisson derivations, crossed homomorphisms, Rota-Baxter operators of any weight, twisted Rota-Baxter operators, Reynolds operators and modified Rota-Baxter operators on Poisson algebras. We show that a deformation map $r$ induces a new Poisson algebra structure and a suitable representation of it. The corresponding Poisson cohomology is defined to be the cohomology of the deformation map $r$. Finally, we study the formal deformations of the operator $r$ in terms of the cohomology.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.