Non-abelian extensions of Rota-Baxter Lie algebras and inducibility of automorphisms (2204.01060v3)
Abstract: A Rota-Baxter Lie algebra $\mathfrak{g}T$ is a Lie algebra $\mathfrak{g}$ equipped with a Rota-Baxter operator $T : \mathfrak{g} \rightarrow \mathfrak{g}$. In this paper, we consider non-abelian extensions of a Rota-Baxter Lie algebra $\mathfrak{g}_T$ by another Rota-Baxter Lie algebra $\mathfrak{h}_S.$ We define the non-abelian cohomology $H2{nab} (\mathfrak{g}T, \mathfrak{h}_S)$ which classifies {equivalence classes of} such extensions. Given a non-abelian extension $$ 0 \rightarrow \mathfrak{h}_S \xrightarrow{i} \mathfrak{e}_U \xrightarrow{p} \mathfrak{g}_T \rightarrow 0$$ of Rota-Baxter Lie algebras, we also show that the obstruction for a pair of Rota-Baxter automorphisms in $\mathrm{Aut}(\mathfrak{h}_S ) \times \mathrm{Aut}(\mathfrak{g}_T)$ to be induced by an automorphism in $\mathrm{Aut}(\mathfrak{e}_U)$ lies in the cohomology group $H2{{nab}} (\mathfrak{g}_T, \mathfrak{h}_S)$. As a byproduct, we obtain the Wells short-exact sequence in the context of Rota-Baxter Lie algebras.