Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Distributed Mixed-Integer Quadratic Programming for Mixed-Traffic Intersection Control (2504.04618v1)

Published 6 Apr 2025 in eess.SY and cs.SY

Abstract: In this paper, we present a distributed algorithm utilizing the proximal alternating direction method of multipliers (ADMM) in conjunction with sequential constraint tightening to address mixed-integer quadratic programming (MIQP) problems associated with traffic light systems and connected automated vehicles (CAVs) in mixed-traffic intersections. We formulate a comprehensive MIQP model aimed at optimizing the coordination of traffic light systems and CAVs, thereby fully capitalizing on the advantages of CAV integration under conditions of high penetration rates. To effectively approximate the intricate multi-agent MIQP challenges, we develop a distributed algorithm that employs proximal ADMM for solving the convex relaxation of the MIQP while systematically tightening the constraint coefficients to uphold integrality requirements. The performance of our control framework and the efficacy of the distributed algorithm are rigorously validated through a series of simulations conducted across varying penetration rates and traffic volumes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube