Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Graph Attention for Heterogeneous Graphs with Positional Encoding (2504.02938v1)

Published 3 Apr 2025 in cs.LG, cs.AI, cs.DM, math.DG, and stat.ML

Abstract: Graph Neural Networks (GNNs) have emerged as the de facto standard for modeling graph data, with attention mechanisms and transformers significantly enhancing their performance on graph-based tasks. Despite these advancements, the performance of GNNs on heterogeneous graphs often remains complex, with networks generally underperforming compared to their homogeneous counterparts. This work benchmarks various GNN architectures to identify the most effective methods for heterogeneous graphs, with a particular focus on node classification and link prediction. Our findings reveal that graph attention networks excel in these tasks. As a main contribution, we explore enhancements to these attention networks by integrating positional encodings for node embeddings. This involves utilizing the full Laplacian spectrum to accurately capture both the relative and absolute positions of each node within the graph, further enhancing performance on downstream tasks such as node classification and link prediction.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube