Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ShieldAgent: Shielding Agents via Verifiable Safety Policy Reasoning (2503.22738v1)

Published 26 Mar 2025 in cs.LG and cs.CR

Abstract: Autonomous agents powered by foundation models have seen widespread adoption across various real-world applications. However, they remain highly vulnerable to malicious instructions and attacks, which can result in severe consequences such as privacy breaches and financial losses. More critically, existing guardrails for LLMs are not applicable due to the complex and dynamic nature of agents. To tackle these challenges, we propose ShieldAgent, the first guardrail agent designed to enforce explicit safety policy compliance for the action trajectory of other protected agents through logical reasoning. Specifically, ShieldAgent first constructs a safety policy model by extracting verifiable rules from policy documents and structuring them into a set of action-based probabilistic rule circuits. Given the action trajectory of the protected agent, ShieldAgent retrieves relevant rule circuits and generates a shielding plan, leveraging its comprehensive tool library and executable code for formal verification. In addition, given the lack of guardrail benchmarks for agents, we introduce ShieldAgent-Bench, a dataset with 3K safety-related pairs of agent instructions and action trajectories, collected via SOTA attacks across 6 web environments and 7 risk categories. Experiments show that ShieldAgent achieves SOTA on ShieldAgent-Bench and three existing benchmarks, outperforming prior methods by 11.3% on average with a high recall of 90.1%. Additionally, ShieldAgent reduces API queries by 64.7% and inference time by 58.2%, demonstrating its high precision and efficiency in safeguarding agents.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.