Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

DiffGAP: A Lightweight Diffusion Module in Contrastive Space for Bridging Cross-Model Gap (2503.12131v1)

Published 15 Mar 2025 in cs.CV, cs.AI, cs.LG, cs.SD, and eess.AS

Abstract: Recent works in cross-modal understanding and generation, notably through models like CLAP (Contrastive Language-Audio Pretraining) and CAVP (Contrastive Audio-Visual Pretraining), have significantly enhanced the alignment of text, video, and audio embeddings via a single contrastive loss. However, these methods often overlook the bidirectional interactions and inherent noises present in each modality, which can crucially impact the quality and efficacy of cross-modal integration. To address this limitation, we introduce DiffGAP, a novel approach incorporating a lightweight generative module within the contrastive space. Specifically, our DiffGAP employs a bidirectional diffusion process tailored to bridge the cross-modal gap more effectively. This involves a denoising process on text and video embeddings conditioned on audio embeddings and vice versa, thus facilitating a more nuanced and robust cross-modal interaction. Our experimental results on VGGSound and AudioCaps datasets demonstrate that DiffGAP significantly improves performance in video/text-audio generation and retrieval tasks, confirming its effectiveness in enhancing cross-modal understanding and generation capabilities.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.