Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Energy-Weighted Flow Matching for Offline Reinforcement Learning (2503.04975v1)

Published 6 Mar 2025 in cs.LG

Abstract: This paper investigates energy guidance in generative modeling, where the target distribution is defined as $q(\mathbf x) \propto p(\mathbf x)\exp(-\beta \mathcal E(\mathbf x))$, with $p(\mathbf x)$ being the data distribution and $\mathcal E(\mathcal x)$ as the energy function. To comply with energy guidance, existing methods often require auxiliary procedures to learn intermediate guidance during the diffusion process. To overcome this limitation, we explore energy-guided flow matching, a generalized form of the diffusion process. We introduce energy-weighted flow matching (EFM), a method that directly learns the energy-guided flow without the need for auxiliary models. Theoretical analysis shows that energy-weighted flow matching accurately captures the guided flow. Additionally, we extend this methodology to energy-weighted diffusion models and apply it to offline reinforcement learning (RL) by proposing the Q-weighted Iterative Policy Optimization (QIPO). Empirically, we demonstrate that the proposed QIPO algorithm improves performance in offline RL tasks. Notably, our algorithm is the first energy-guided diffusion model that operates independently of auxiliary models and the first exact energy-guided flow matching model in the literature.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube