Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

PDX: A Data Layout for Vector Similarity Search (2503.04422v1)

Published 6 Mar 2025 in cs.DB and cs.AI

Abstract: We propose Partition Dimensions Across (PDX), a data layout for vectors (e.g., embeddings) that, similar to PAX [6], stores multiple vectors in one block, using a vertical layout for the dimensions (Figure 1). PDX accelerates exact and approximate similarity search thanks to its dimension-by-dimension search strategy that operates on multiple-vectors-at-a-time in tight loops. It beats SIMD-optimized distance kernels on standard horizontal vector storage (avg 40% faster), only relying on scalar code that gets auto-vectorized. We combined the PDX layout with recent dimension-pruning algorithms ADSampling [19] and BSA [52] that accelerate approximate vector search. We found that these algorithms on the horizontal vector layout can lose to SIMD-optimized linear scans, even if they are SIMD-optimized. However, when used on PDX, their benefit is restored to 2-7x. We find that search on PDX is especially fast if a limited number of dimensions has to be scanned fully, which is what the dimension-pruning approaches do. We finally introduce PDX-BOND, an even more flexible dimension-pruning strategy, with good performance on exact search and reasonable performance on approximate search. Unlike previous pruning algorithms, it can work on vector data "as-is" without preprocessing; making it attractive for vector databases with frequent updates.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 13 likes.

Upgrade to Pro to view all of the tweets about this paper: