Papers
Topics
Authors
Recent
2000 character limit reached

A comparison of visual representations for real-world reinforcement learning in the context of vacuum gripping (2503.02405v1)

Published 4 Mar 2025 in cs.RO

Abstract: When manipulating objects in the real world, we need reactive feedback policies that take into account sensor information to inform decisions. This study aims to determine how different encoders can be used in a reinforcement learning (RL) framework to interpret the spatial environment in the local surroundings of a robot arm. Our investigation focuses on comparing real-world vision with 3D scene inputs, exploring new architectures in the process. We built on the SERL framework, providing us with a sample efficient and stable RL foundation we could build upon, while keeping training times minimal. The results of this study indicate that spatial information helps to significantly outperform the visual counterpart, tested on a box picking task with a vacuum gripper. The code and videos of the evaluations are available at https://github.com/nisutte/voxel-serl.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: