Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parameter-Varying Feedforward Control: A Kernel-Based Learning Approach (2502.21105v2)

Published 28 Feb 2025 in eess.SY and cs.SY

Abstract: The increasing demands for high accuracy in mechatronic systems necessitate the incorporation of parameter variations in feedforward control. The aim of this paper is to develop a data-driven approach for direct learning of parameter-varying feedforward control to increase tracking performance. The developed approach is based on kernel-regularized function estimation in conjunction with iterative learning to directly learn parameter-varying feedforward control from data. This approach enables high tracking performance for feedforward control of linear parameter-varying dynamics, providing flexibility to varying reference tasks. The developed framework is validated on a benchmark industrial experimental setup featuring a belt-driven carriage.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.