Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Learning for Parameter-Varying Feedforward Control: A Neural-Network Approach (2309.12722v1)

Published 22 Sep 2023 in eess.SY and cs.SY

Abstract: The performance of a feedforward controller is primarily determined by the extent to which it can capture the relevant dynamics of a system. The aim of this paper is to develop an input-output linear parameter-varying (LPV) feedforward parameterization and a corresponding data-driven estimation method in which the dependency of the coefficients on the scheduling signal are learned by a neural network. The use of a neural network enables the parameterization to compensate a wide class of constant relative degree LPV systems. Efficient optimization of the neural-network-based controller is achieved through a Levenberg-Marquardt approach with analytic gradients and a pseudolinear approach generalizing Sanathanan-Koerner to the LPV case. The performance of the developed feedforward learning method is validated in a simulation study of an LPV system showing excellent performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.