Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Process Position-Dependent Feedforward: With Application to a Wire Bonder (2201.07511v2)

Published 19 Jan 2022 in eess.SY and cs.SY

Abstract: Mechatronic systems have increasingly stringent performance requirements for motion control, leading to a situation where many factors, such as position-dependency, cannot be neglected in feedforward control. The aim of this paper is to compensate for position-dependent effects by modeling feedforward parameters as a function of position. A framework to model and identify feedforward parameters as a continuous function of position is developed by combining Gaussian processes and feedforward parameter learning techniques. The framework results in a fully data-driven approach, which can be readily implemented for industrial control applications. The framework is experimentally validated and shows a significant performance increase on a commercial wire bonder.

Citations (4)

Summary

We haven't generated a summary for this paper yet.