Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FLEKE: Federated Locate-then-Edit Knowledge Editing (2502.15677v1)

Published 21 Feb 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Locate-then-Edit Knowledge Editing (LEKE) is a key technique for updating LLMs without full retraining. However, existing methods assume a single-user setting and become inefficient in real-world multi-client scenarios, where decentralized organizations (e.g., hospitals, financial institutions) independently update overlapping knowledge, leading to redundant mediator knowledge vector (MKV) computations and privacy concerns. To address these challenges, we introduce Federated Locate-then-Edit Knowledge Editing (FLEKE), a novel task that enables multiple clients to collaboratively perform LEKE while preserving privacy and reducing computational overhead. To achieve this, we propose FedEdit, a two-stage framework that optimizes MKV selection and reuse. In the first stage, clients locally apply LEKE and upload the computed MKVs. In the second stage, rather than relying solely on server-based MKV sharing, FLEKE allows clients retrieve relevant MKVs based on cosine similarity, enabling knowledge re-edit and minimizing redundant computations. Experimental results on two benchmark datasets demonstrate that FedEdit retains over 96% of the performance of non-federated LEKE while significantly outperforming a FedAvg-based baseline by approximately twofold. Besides, we find that MEMIT performs more consistently than PMET in the FLEKE task with our FedEdit framework. Our code is available at https://github.com/zongkaiz/FLEKE.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub