Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Generative Predictive Control: Flow Matching Policies for Dynamic and Difficult-to-Demonstrate Tasks (2502.13406v2)

Published 19 Feb 2025 in cs.RO, cs.AI, cs.SY, and eess.SY

Abstract: Generative control policies have recently unlocked major progress in robotics. These methods produce action sequences via diffusion or flow matching, with training data provided by demonstrations. But existing methods come with two key limitations: they require expert demonstrations, which can be difficult to obtain, and they are limited to relatively slow, quasi-static tasks. In this paper, we leverage a tight connection between sampling-based predictive control and generative modeling to address each of these issues. In particular, we introduce generative predictive control, a supervised learning framework for tasks with fast dynamics that are easy to simulate but difficult to demonstrate. We then show how trained flow-matching policies can be warm-started at inference time, maintaining temporal consistency and enabling high-frequency feedback. We believe that generative predictive control offers a complementary approach to existing behavior cloning methods, and hope that it paves the way toward generalist policies that extend beyond quasi-static demonstration-oriented tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.