Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Reinforcement Learning for Flow-Matching Policies (2507.15073v1)

Published 20 Jul 2025 in cs.LG

Abstract: Flow-matching policies have emerged as a powerful paradigm for generalist robotics. These models are trained to imitate an action chunk, conditioned on sensor observations and textual instructions. Often, training demonstrations are generated by a suboptimal policy, such as a human operator. This work explores training flow-matching policies via reinforcement learning to surpass the original demonstration policy performance. We particularly note minimum-time control as a key application and present a simple scheme for variable-horizon flow-matching planning. We then introduce two families of approaches: a simple Reward-Weighted Flow Matching (RWFM) scheme and a Group Relative Policy Optimization (GRPO) approach with a learned reward surrogate. Our policies are trained on an illustrative suite of simulated unicycle dynamics tasks, and we show that both approaches dramatically improve upon the suboptimal demonstrator performance, with the GRPO approach in particular generally incurring between $50\%$ and $85\%$ less cost than a naive Imitation Learning Flow Matching (ILFM) approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube