Papers
Topics
Authors
Recent
2000 character limit reached

Rolling with the Punches: Resilient Contrastive Pre-training under Non-Stationary Drift (2502.07620v2)

Published 11 Feb 2025 in cs.LG and cs.CV

Abstract: The remarkable success of large-scale contrastive pre-training, fueled by vast and curated datasets, is encountering new frontiers as the scaling paradigm evolves. A critical emerging challenge is the effective pre-training of models on dynamic data streams characterized by concept drift, unpredictable changes in the underlying data distribution. This paper undertakes a foundational investigation of this issue. We first reveal that conventional contrastive pre-training methods are notably vulnerable to concept drift, leading to significant biases in the learned feature space of pre-trained models. To systematically analyze these effects, we construct a structural causal model that elucidates how drift acts as a confounder, distorting learned representations. Based on these causal insights, we propose Resilient Contrastive Pre-training (RCP), a novel method incorporating causal intervention. RCP introduces a causally-informed objective designed to mitigate drift-induced biases by leveraging targeted interventions. RCP is designed for simple and scalable implementation and exhibits notable adaptability, promoting robust pre-training on evolving data. Comprehensive experiments across diverse downstream tasks compellingly demonstrate that RCP effectively alleviates the detrimental impact of concept drift, yielding more resilient and generalizable representations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.