Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Singing Voice Conversion with Accompaniment Using Self-Supervised Representation-Based Melody Features (2502.04722v1)

Published 7 Feb 2025 in cs.SD, cs.LG, and eess.AS

Abstract: Melody preservation is crucial in singing voice conversion (SVC). However, in many scenarios, audio is often accompanied with background music (BGM), which can cause audio distortion and interfere with the extraction of melody and other key features, significantly degrading SVC performance. Previous methods have attempted to address this by using more robust neural network-based melody extractors, but their performance drops sharply in the presence of complex accompaniment. Other approaches involve performing source separation before conversion, but this often introduces noticeable artifacts, leading to a significant drop in conversion quality and increasing the user's operational costs. To address these issues, we introduce a novel SVC method that uses self-supervised representation-based melody features to improve melody modeling accuracy in the presence of BGM. In our experiments, we compare the effectiveness of different self-supervised learning (SSL) models for melody extraction and explore for the first time how SSL benefits the task of melody extraction. The experimental results demonstrate that our proposed SVC model significantly outperforms existing baseline methods in terms of melody accuracy and shows higher similarity and naturalness in both subjective and objective evaluations across noisy and clean audio environments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.