Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enhancing Quantum-ready QUBO-based Suppression for Object Detection with Appearance and Confidence Features (2502.02895v1)

Published 5 Feb 2025 in cs.CV

Abstract: Quadratic Unconstrained Binary Optimization (QUBO)-based suppression in object detection is known to have superiority to conventional Non-Maximum Suppression (NMS), especially for crowded scenes where NMS possibly suppresses the (partially-) occluded true positives with low confidence scores. Whereas existing QUBO formulations are less likely to miss occluded objects than NMS, there is room for improvement because existing QUBO formulations naively consider confidence scores and pairwise scores based on spatial overlap between predictions. This study proposes new QUBO formulations that aim to distinguish whether the overlap between predictions is due to the occlusion of objects or due to redundancy in prediction, i.e., multiple predictions for a single object. The proposed QUBO formulation integrates two features into the pairwise score of the existing QUBO formulation: i) the appearance feature calculated by the image similarity metric and ii) the product of confidence scores. These features are derived from the hypothesis that redundant predictions share a similar appearance feature and (partially-) occluded objects have low confidence scores, respectively. The proposed methods demonstrate significant advancement over state-of-the-art QUBO-based suppression without a notable increase in runtime, achieving up to 4.54 points improvement in mAP and 9.89 points gain in mAR.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: