Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Target-aware Bayesian inference via generalized thermodynamic integration (2502.02206v1)

Published 4 Feb 2025 in stat.CO, cs.CE, and stat.ME

Abstract: In Bayesian inference, we are usually interested in the numerical approximation of integrals that are posterior expectations or marginal likelihoods (a.k.a., Bayesian evidence). In this paper, we focus on the computation of the posterior expectation of a function $f(\x)$. We consider a \emph{target-aware} scenario where $f(\x)$ is known in advance and can be exploited in order to improve the estimation of the posterior expectation. In this scenario, this task can be reduced to perform several independent marginal likelihood estimation tasks. The idea of using a path of tempered posterior distributions has been widely applied in the literature for the computation of marginal likelihoods. Thermodynamic integration, path sampling and annealing importance sampling are well-known examples of algorithms belonging to this family of methods. In this work, we introduce a generalized thermodynamic integration (GTI) scheme which is able to perform a target-aware Bayesian inference, i.e., GTI can approximate the posterior expectation of a given function. Several scenarios of application of GTI are discussed and different numerical simulations are provided.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.