Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Hybrid Data-Driven Approach For Analyzing And Predicting Inpatient Length Of Stay In Health Centre (2501.18535v1)

Published 30 Jan 2025 in cs.LG and cs.AI

Abstract: Patient length of stay (LoS) is a critical metric for evaluating the efficacy of hospital management. The primary objectives encompass to improve efficiency and reduce costs while enhancing patient outcomes and hospital capacity within the patient journey. By seamlessly merging data-driven techniques with simulation methodologies, the study proposes an all-encompassing framework for the optimization of patient flow. Using a comprehensive dataset of 2.3 million de-identified patient records, we analyzed demographics, diagnoses, treatments, services, costs, and charges with machine learning models (Decision Tree, Logistic Regression, Random Forest, Adaboost, LightGBM) and Python tools (Spark, AWS clusters, dimensionality reduction). Our model predicts patient length of stay (LoS) upon admission using supervised learning algorithms. This hybrid approach enables the identification of key factors influencing LoS, offering a robust framework for hospitals to streamline patient flow and resource utilization. The research focuses on patient flow, corroborating the efficacy of the approach, illustrating decreased patient length of stay within a real healthcare environment. The findings underscore the potential of hybrid data-driven models in transforming hospital management practices. This innovative methodology provides generally flexible decision-making, training, and patient flow enhancement; such a system could have huge implications for healthcare administration and overall satisfaction with healthcare.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.