Papers
Topics
Authors
Recent
2000 character limit reached

Univariate-Guided Sparse Regression (2501.18360v9)

Published 30 Jan 2025 in stat.ME

Abstract: In this paper, we introduce ``UniLasso'' -- a novel statistical method for sparse regression. This two-stage approach preserves the signs of the univariate coefficients and leverages their magnitude. Both of these properties are attractive for stability and interpretation of the model. Through comprehensive simulations and applications to real-world datasets, we demonstrate that UniLasso outperforms Lasso in various settings, particularly in terms of sparsity and model interpretability. We prove asymptotic support recovery and mean-squared error consistency under a set of conditions different from the well-known irrepresentability conditions for the Lasso. Extensions to generalized linear models (GLMs) and Cox regression are also discussed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 14 likes about this paper.