Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Is Open Source the Future of AI? A Data-Driven Approach (2501.16403v1)

Published 27 Jan 2025 in cs.SE, cs.AI, and cs.CL

Abstract: LLMs have become central in academia and industry, raising concerns about privacy, transparency, and misuse. A key issue is the trustworthiness of proprietary models, with open-sourcing often proposed as a solution. However, open-sourcing presents challenges, including potential misuse, financial disincentives, and intellectual property concerns. Proprietary models, backed by private sector resources, are better positioned for return on investment. There are also other approaches that lie somewhere on the spectrum between completely open-source and proprietary. These can largely be categorised into open-source usage limitations protected by licensing, partially open-source (open weights) models, hybrid approaches where obsolete model versions are open-sourced, while competitive versions with market value remain proprietary. Currently, discussions on where on the spectrum future models should fall on remains unbacked and mostly opinionated where industry leaders are weighing in on the discussion. In this paper, we present a data-driven approach by compiling data on open-source development of LLMs, and their contributions in terms of improvements, modifications, and methods. Our goal is to avoid supporting either extreme but rather present data that will support future discussions both by industry experts as well as policy makers. Our findings indicate that open-source contributions can enhance model performance, with trends such as reduced model size and manageable accuracy loss. We also identify positive community engagement patterns and architectures that benefit most from open contributions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube