Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GraphICL: Unlocking Graph Learning Potential in LLMs through Structured Prompt Design (2501.15755v1)

Published 27 Jan 2025 in cs.LG

Abstract: The growing importance of textual and relational systems has driven interest in enhancing LLMs for graph-structured data, particularly Text-Attributed Graphs (TAGs), where samples are represented by textual descriptions interconnected by edges. While research has largely focused on developing specialized graph LLMs through task-specific instruction tuning, a comprehensive benchmark for evaluating LLMs solely through prompt design remains surprisingly absent. Without such a carefully crafted evaluation benchmark, most if not all, tailored graph LLMs are compared against general LLMs using simplistic queries (e.g., zero-shot reasoning with LLaMA), which can potentially camouflage many advantages as well as unexpected predicaments of them. To achieve more general evaluations and unveil the true potential of LLMs for graph tasks, we introduce Graph In-context Learning (GraphICL) Benchmark, a comprehensive benchmark comprising novel prompt templates designed to capture graph structure and handle limited label knowledge. Our systematic evaluation shows that general-purpose LLMs equipped with our GraphICL outperform state-of-the-art specialized graph LLMs and graph neural network models in resource-constrained settings and out-of-domain tasks. These findings highlight the significant potential of prompt engineering to enhance LLM performance on graph learning tasks without training and offer a strong baseline for advancing research in graph LLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube