Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
87 tokens/sec
Gemini 2.5 Pro Premium
36 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
39 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
219 tokens/sec
2000 character limit reached

What is a Relevant Signal-to-Noise Ratio for Numerical Differentiation? (2501.14906v1)

Published 24 Jan 2025 in eess.SY and cs.SY

Abstract: In applications that involve sensor data, a useful measure of signal-to-noise ratio (SNR) is the ratio of the root-mean-squared (RMS) signal to the RMS sensor noise. The present paper shows that, for numerical differentiation, the traditional SNR is ineffective. In particular, it is shown that, for a harmonic signal with harmonic sensor noise, a natural and relevant SNR is given by the ratio of the RMS of the derivative of the signal to the RMS of the derivative of the sensor noise. For a harmonic signal with white sensor noise, an effective SNR is derived. Implications of these observations for signal processing are discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube