Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Uniform set systems with small VC-dimension (2501.13850v2)

Published 23 Jan 2025 in math.CO

Abstract: We investigate the longstanding problem of determining the maximum size of a $(d+1)$-uniform set system with VC-dimension at most $d$. Since the seminal 1984 work of Frankl and Pach, which established the elegant upper bound $\binom{n}{d}$, this question has resisted significant progress. The best-known lower bound is $\binom{n-1}{d} + \binom{n-4}{d-2}$, obtained by Ahlswede and Khachatrian, leaving a substantial gap of $\binom{n-1}{d-1}-\binom{n-4}{d-2}$. Despite decades of effort, improvements to the Frankl--Pach bound have been incremental at best: Mubayi and Zhao introduced an $\Omega_d(\log{n})$ improvement for prime powers $d$, while Ge, Xu, Yip, Zhang, and Zhao achieved a gain of 1 for general $d$. In this work, we provide a purely combinatorial approach that significantly sharpens the Frankl--Pach upper bound. Specifically, for large $n$, we demonstrate that the Frankl--Pach bound can be improved to $\binom{n}{d} - \binom{n-1}{d-1} + O_d(n{d-1 - \frac{1}{4d-2}})=\binom{n-1}{d}+O_d(n{d-1 - \frac{1}{4d-2}})$. This result completely removes the main term $\binom{n-1}{d-1}$ from the previous gap between the known lower and upper bounds. It also offers fresh insights into the combinatorial structure of uniform set systems with small VC-dimension. In addition, the original Erd\H{o}s--Frankl--Pach conjecture, which sought to generalize the EKR theorem in the 1980s, has been disproven. We propose a new refined conjecture that might establish a sturdier bridge between VC-dimension and the EKR theorem, and we verify several specific cases of this conjecture, which is of independent interest.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube