Tight bounds on the maximum size of a set of permutations with bounded VC-dimension (1104.5007v3)
Abstract: The VC-dimension of a family P of n-permutations is the largest integer k such that the set of restrictions of the permutations in P on some k-tuple of positions is the set of all k! permutation patterns. Let r_k(n) be the maximum size of a set of n-permutations with VC-dimension k. Raz showed that r_2(n) grows exponentially in n. We show that r_3(n)=2Theta(n log(alpha(n))) and for every s >= 4, we have almost tight upper and lower bounds of the form 2{n poly(alpha(n))}. We also study the maximum number p_k(n) of 1-entries in an n x n (0,1)-matrix with no (k+1)-tuple of columns containing all (k+1)-permutation matrices. We determine that p_3(n) = Theta(n alpha(n)) and that p_s(n) can be bounded by functions of the form n 2poly(alpha(n)) for every fixed s >= 4. We also show that for every positive s there is a slowly growing function zeta_s(m) (of the form 2poly(alpha(m)) for every fixed s >= 5) satisfying the following. For all positive integers n and B and every n x n (0,1)-matrix M with zeta_s(n)Bn 1-entries, the rows of M can be partitioned into s intervals so that at least B columns contain at least B 1-entries in each of the intervals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.