Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Optimizing Structured-Sparse Matrix Multiplication in RISC-V Vector Processors (2501.10189v1)

Published 17 Jan 2025 in cs.AR

Abstract: Structured sparsity has been proposed as an efficient way to prune the complexity of Machine Learning (ML) applications and to simplify the handling of sparse data in hardware. Accelerating ML models, whether for training, or inference, heavily relies on matrix multiplications that can be efficiently executed on vector processors, or custom matrix engines. This work aims to integrate the simplicity of structured sparsity into vector execution to speed up the corresponding matrix multiplications. Initially, the implementation of structured-sparse matrix multiplication using the current RISC-V instruction set vector extension is comprehensively explored. Critical parameters that affect performance, such as the impact of data distribution across the scalar and vector register files, data locality, and the effectiveness of loop unrolling are analyzed both qualitatively and quantitatively. Furthermore, it is demonstrated that the addition of a single new instruction would reap even higher performance. The newly proposed instruction is called vindexmac, i.e., vector index-multiply-accumulate. It allows for indirect reads from the vector register file and it reduces the number of instructions executed per matrix multiplication iteration, without introducing additional dependencies that would limit loop unrolling. The proposed new instruction was integrated in a decoupled RISC-V vector processor with negligible hardware cost. Experimental results demonstrate the runtime efficiency and the scalability offered by the introduced optimizations and the new instruction for the execution of state-of-the-art Convolutional Neural Networks. More particularly, the addition of a custom instruction improves runtime by 25% and 33% when compared with highly-optimized vectorized kernels that use only the currently defined RISC-V instructions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com