Papers
Topics
Authors
Recent
2000 character limit reached

Metric Learning with Progressive Self-Distillation for Audio-Visual Embedding Learning (2501.09608v1)

Published 16 Jan 2025 in cs.SD, cs.AI, cs.CV, cs.IR, cs.MM, and eess.AS

Abstract: Metric learning projects samples into an embedded space, where similarities and dissimilarities are quantified based on their learned representations. However, existing methods often rely on label-guided representation learning, where representations of different modalities, such as audio and visual data, are aligned based on annotated labels. This approach tends to underutilize latent complex features and potential relationships inherent in the distributions of audio and visual data that are not directly tied to the labels, resulting in suboptimal performance in audio-visual embedding learning. To address this issue, we propose a novel architecture that integrates cross-modal triplet loss with progressive self-distillation. Our method enhances representation learning by leveraging inherent distributions and dynamically refining soft audio-visual alignments -- probabilistic alignments between audio and visual data that capture the inherent relationships beyond explicit labels. Specifically, the model distills audio-visual distribution-based knowledge from annotated labels in a subset of each batch. This self-distilled knowledge is used t

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.