RoboReflect: A Robotic Reflective Reasoning Framework for Grasping Ambiguous-Condition Objects (2501.09307v2)
Abstract: As robotic technology rapidly develops, robots are being employed in an increasing number of fields. However, due to the complexity of deployment environments or the prevalence of ambiguous-condition objects, the practical application of robotics still faces many challenges, leading to frequent errors. Traditional methods and some LLM-based approaches, although improved, still require substantial human intervention and struggle with autonomous error correction in complex scenarios. In this work, we propose RoboReflect, a novel framework leveraging large vision-LLMs (LVLMs) to enable self-reflection and autonomous error correction in robotic grasping tasks. RoboReflect allows robots to automatically adjust their strategies based on unsuccessful attempts until successful execution is achieved. The corrected strategies are saved in the memory for future task reference. We evaluate RoboReflect through extensive testing on eight common objects prone to ambiguous conditions of three categories. Our results demonstrate that RoboReflect not only outperforms existing grasp pose estimation methods like AnyGrasp and high-level action planning techniques ReKep with GPT-4V but also significantly enhances the robot's capability to adapt and correct errors independently. These findings underscore the critical importance of autonomous self-reflection in robotic systems while effectively addressing the challenges posed by ambiguous-condition environments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.